Euclidean Algorithm and Bézout's Identity

PRANAV KONDA

September 13, 2020

§1 Euclidean Algorithm

Recall that the division algorithm states that for every pair of integers a and b , there exists a distinct integer quotient and remainder, q and r , such that

$$
a = bq + r \text{ for } 0 \le r < b.
$$

Using this, we can arrive at the main subject of this handout, the Euclidean Algorithm.

Theorem 1.1 (Euclid)

For natural numbers a and b , and their quotient and remainder q and r (obtained from the division algorithm) such that $a = bq + r$, we have gcd $(a, b) = \gcd(b, r)$.

Proof. We claim that the set of common divisors between a and b is the same as those between b and r.

Let d be a common divisor of a and b. Since d divides both a and b, it must also divide all linear combinations of a and b, so $d|a - bq = r$. Thus d is also a common divisor of b and r.

Now assume d is a common divisor of b and r. Then d must divide all linear combinations of b and r, and it follows that $d|bq + r = a$. Thus d is a common divisor of a and b as well.

Since the sets of common divisors of a and b are equivalent, their greatest elements must be equivalent as well, so $gcd(a, b) = gcd(b, r)$. \Box

An immediate corollary of Theorem 1.1 is the Euclidean Algorithm, which provides a quick way to calculate the greatest common divisor of 2 numbers.

Corollary (Euclidean Algorithm)

For two natural numbers a and b, where $a > b$, repeated use of the division algorithm yields

 $a = bq_1 + r$ $b = r_1q_2 + r_2$ $r_1 = r_2q_3 + r_3$ · · · $r_{n-2} = r_{n-1}q_n + r_n$ $r_{n-1} = r_n q_{n+1}.$

Then it follows that $gcd(a, b) = gcd(b, r_1) = \cdots = gcd(r_{n-1}, r_n) = r_n$.

The division algorithm, and by extension the euclidean algorithm also hold for the set of all polynomials with rational coefficients, where a, b, q , and r would be polynomials.

Example 1.2 (1986 AIME/5): What is the largest positive integer n such that $n^3 + 100$ is divisible ny $n + 10$?

Answer. Note that $n^3 + 100$ can be expressed as $(n+10)(n^2 + an + b) + c = n^3 + (10 + a)n^2 + (10a + b)$ $b)n + 10b + c$ for $a, b, c \in \mathbb{R}$. Equating the coefficients yields the following system:

$$
\begin{cases}\n0 = a + 10 \\
0 = 10a + b \\
100 = 10b + c\n\end{cases}
$$

which yields $a = -10$, $b = 100$, and $c = -900$. By the Euclidean Algorithm we have

$$
\gcd(n^3 + 100, n + 10) = \gcd(-900, n + 10) = \gcd(900, n + 10),
$$

which has a maxiumum value for *n* when $n = 890$.

Let's look at another example, this time from the first IMO.

Example 1.3 (1959 IMO/1): Prove that the fraction $\frac{21n+4}{14n+3}$ is irreducible for every natural number n.

Proof. We can apply the Euclidean Algorithm as follows:

$$
\gcd(21n+4, 14n+3) = \gcd(7n+1, 14n+3) = \gcd(7n+1, 1) = 1.
$$

Since the greatest common divisor of $21n + 4$ and $14n + 3$ is 1 for all n, it follows that $\frac{21n + 4}{14n + 3}$ is irreducible.

§2 Bézout's Identity

One application of the Euclidean Algorithm is Bézout's Identity.

```
Theorem 2.1 (Bézout's Identity)
For any natural numbers a and b, there exist x, y \in \mathbb{Z} such that ax + by = \gcd(a, b).
```
Proof. We can apply the Euclidean Algorithm backwards:

$$
gcd(a, b) = r_{n-2} - r_{n-1}q_n
$$

= $r_{n_2} - (r_{n-3} - r_{n-2}q_{n-1})q_n = r_{n-2}(1 + q_nq_{n-1}) - r_{n-3}q_n$
= ...
= $ax + by$.

 \Box

Example 2.2: Find x, y such that $110x + 380y = 10$.

Answer. Applying the Euclidean Algorithm, we obtain

$$
380 = 110 \times 3 + 50
$$

$$
110 = 50 \times 2 + 10
$$

$$
50 = 10 \times 5.
$$

Now, we do it backwards, to obtain

$$
10 = 110 - 50 \times 2
$$

= 110 - (380 - 110 \times 3) \times 2
= 7 \times 110 - 2 \times 380.

Then we have $(x, y) = (7, -2)$.

Let's prove Euclid's Lemma using Bézout's Identity.

Example 2.3 (Euclid's Lemma): Prove that if a|bc and $gcd(a, b) = 1$, then a|c.

Proof. By Bézout's Identity, there exist some x and y such that

$$
ax + by = 1.
$$

Mutiplying this by c yields $c(ax) + c(by) = c$, and since a and b |bc, we have $a|c(ax) + c(by) = c$. \Box

Let's look at another example.

Example 2.4 (Putnam 2000): Prove that the expression

$$
\frac{\gcd(m, n)}{n} {n \choose m}
$$

is an integer for all (n, m) such that $n \geq m \geq 1$.

Proof. By Bézout's Identity, we have a and b such that $gcd(m, n) = am + bn$. Substitution into the expression yields

$$
\frac{am + bn}{n} \binom{n}{m} = \frac{am}{n} \binom{n}{m} + b \binom{n}{m}.
$$

Note that

$$
\frac{am}{n}\binom{n}{m} = \frac{am}{n}\left(\frac{n!}{m!(n-m)!}\right) = a\left(\frac{(n-1)!}{(m-1)!(n-m)!}\right) = a\binom{n-1}{m-1}.
$$

Thus

$$
\gcd(m, n) n \binom{m}{n} = a \binom{m-1}{n-1} + b \binom{m}{n}
$$

is an integer for all integral $n \geq m \geq 1$.

We can also extend Bézout's Identity to any number of variables.

Theorem 2.5 (General Form of Bézout's Identity)

For any integers a_1, a_2, \dots, a_n , there exist integers x_1, x_2, \dots, x_n such that

$$
\sum_{i=1}^n a_i x_i = \gcd(a_1, a_2, \cdots, a_n).
$$

Just like before, Bézout's Identity works in the set of all polynomials with rational coefficients as well.

 \Box

§3 Sources

- 1. AoPS (<https://artofproblemsolving.com>)
- 2. Justin Steven's Olympiad Number Theory Through Challenging Problems ([https://s3.amazonaws](https://s3.amazonaws.com/aops-cdn.artofproblemsolving.com/resources/articles/olympiad-number-theory.pdf). [com/aops-cdn.artofproblemsolving.com/resources/articles/olympiad-number-theory.pdf](https://s3.amazonaws.com/aops-cdn.artofproblemsolving.com/resources/articles/olympiad-number-theory.pdf))