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§1 Euclidean Algorithm

Recall that the division algorithm states that for every pair of integers a and b, there exists a distinct
integer quotient and remainder, q and r, such that

a = bq + r for 0 ≤ r < b.

Using this, we can arrive at the main subject of this handout, the Euclidean Algorithm.

Theorem 1.1 (Euclid)

For natural numbers a and b, and their quotient and remainder q and r (obtained from the division
algorithm) such that a = bq + r, we have gcd (a, b) = gcd (b, r).

Proof. We claim that the set of common divisors between a and b is the same as those between b and r.

Let d be a common divisor of a and b. Since d divides both a and b, it must also divide all lin-
ear combinations of a and b, so d|a− bq = r. Thus d is also a common divisor of b and r.

Now assume d is a common divisor of b and r. Then d must divide all linear combinations of b
and r, and it follows that d|bq + r = a. Thus d is a common divisor of a and b as well.

Since the sets of common divisors of a and b are equivalent, their greatest elements must be equivalent
as well, so gcd (a, b) = gcd (b, r).

An immediate corollary of Theorem 1.1 is the Euclidean Algorithm, which provides a quick way to
calculate the greatest common divisor of 2 numbers.

Corollary (Euclidean Algorithm)

For two natural numbers a and b, where a > b, repeated use of the division algorithm yields

a = bq1 + r

b = r1q2 + r2

r1 = r2q3 + r3

· · ·
rn−2 = rn−1qn + rn

rn−1 = rnqn+1.

Then it follows that gcd (a, b) = gcd (b, r1) = · · · = gcd (rn−1, rn) = rn.

The division algorithm, and by extension the euclidean algorithm also hold for the set of all polynomials
with rational coefficients, where a, b, q, and r would be polynomials.
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Example 1.2 (1986 AIME/5): What is the largest positive integer n such that n3 + 100 is divisible
ny n + 10?

Answer. Note that n3 + 100 can be expressed as (n + 10)(n2 + an + b) + c = n3 + (10 + a)n2 + (10a +
b)n + 10b + c for a, b, c ∈ R. Equating the coefficients yields the following system:

0 = a + 10

0 = 10a + b

100 = 10b + c

which yields a = −10, b = 100, and c = −900. By the Euclidean Algorithm we have

gcd (n3 + 100, n + 10) = gcd (−900, n + 10) = gcd (900, n + 10),

which has a maxiumum value for n when n = 890 .

Let’s look at another example, this time from the first IMO.

Example 1.3 (1959 IMO/1): Prove that the fraction
21n + 4

14n + 3
is irreducible for every natural

number n.

Proof. We can apply the Euclidean Algorithm as follows:

gcd (21n + 4, 14n + 3) = gcd (7n + 1, 14n + 3) = gcd (7n + 1, 1) = 1.

Since the greatest common divisor of 21n + 4 and 14n + 3 is 1 for all n, it follows that
21n + 4

14n + 3
is

irreducible.

§2 Bézout’s Identity

One application of the Euclidean Algorithm is Bézout’s Identity.

Theorem 2.1 (Bézout’s Identity)

For any natural numbers a and b, there exist x, y ∈ Z such that ax + by = gcd (a, b).

Proof. We can apply the Euclidean Algorithm backwards:

gcd (a, b) = rn−2 − rn−1qn

= rn2 − (rn−3 − rn−2qn−1)qn = rn−2(1 + qnqn−1)− rn−3qn

= · · ·
= ax + by.

Example 2.2: Find x, y such that 110x + 380y = 10.

Answer. Applying the Euclidean Algorithm, we obtain

380 = 110× 3 + 50

110 = 50× 2 + 10

50 = 10× 5.
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Now, we do it backwards, to obtain

10 = 110− 50× 2

= 110− (380− 110× 3)× 2

= 7× 110− 2× 380.

Then we have (x, y) = (7,−2).

Let’s prove Euclid’s Lemma using Bézout’s Identity.

Example 2.3 (Euclid’s Lemma): Prove that if a|bc and gcd (a, b) = 1, then a|c.

Proof. By Bézout’s Identity, there exist some x and y such that

ax + by = 1.

Mutiplying this by c yields c(ax) + c(by) = c, and since a|ac and b|bc, we have a|c(ax) + c(by) = c.

Let’s look at another example.

Example 2.4 (Putnam 2000): Prove that the expression

gcd (m,n)

n

(
n

m

)
is an integer for all (n,m) such that n ≥ m ≥ 1.

Proof. By Bézout’s Identity, we have a and b such that gcd (m,n) = am + bn. Substitution into the
expression yields

am + bn

n

(
n

m

)
=

am

n

(
n

m

)
+ b

(
n

m

)
.

Note that
am

n

(
n

m

)
=

am

n

(
n!

m!(n−m)!

)
= a

(
(n− 1)!

(m− 1)!(n−m)!

)
= a

(
n− 1

m− 1

)
.

Thus

gcd (m,n)n

(
m

n

)
= a

(
m− 1

n− 1

)
+ b

(
m

n

)
is an integer for all integral n ≥ m ≥ 1.

We can also extend Bézout’s Identity to any number of variables.

Theorem 2.5 (General Form of Bézout’s Identity)

For any integers a1, a2, · · · , an, there exist integers x1, x2, · · · , xn such that

n∑
i=1

aixi = gcd (a1, a2, · · · , an).

Just like before, Bézout’s Identity works in the set of all polynomials with rational coefficients as well.
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§3 Sources

1. AoPS (https://artofproblemsolving.com)

2. Justin Steven’s Olympiad Number Theory Through Challenging Problems (https://s3.amazonaws.
com/aops-cdn.artofproblemsolving.com/resources/articles/olympiad-number-theory.pdf)
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