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Euclidean Algorithm

Recall that the division algorithm states that for every pair of integers a and b, there exists a distinct
integer quotient and remainder, ¢ and r, such that

a=>bg+rfor 0 <r<b.

Using this, we can arrive at the main subject of this handout, the Euclidean Algorithm.

Theorem 1.1 (Euclid)

For natural numbers a and b, and their quotient and remainder g and r (obtained from the division
algorithm) such that a = bg + r, we have ged (a, b) = ged (b, 7).

Proof. We claim that the set of common divisors between a and b is the same as those between b and 7.

Let d be a common divisor of ¢ and b. Since d divides both a and b, it must also divide all lin-
ear combinations of a and b, so d|a — bqg = r. Thus d is also a common divisor of b and r.

Now assume d is a common divisor of b and r. Then d must divide all linear combinations of b
and 7, and it follows that d|bg + r = a. Thus d is a common divisor of a and b as well.

Since the sets of common divisors of a and b are equivalent, their greatest elements must be equivalent
as well, so ged (a,b) = ged (b, 7). O

An immediate corollary of Theorem 1.1 is the Euclidean Algorithm, which provides a quick way to
calculate the greatest common divisor of 2 numbers.

Corollary (Euclidean Algorithm)

For two natural numbers a and b, where a > b, repeated use of the division algorithm yields

a=bq+r
b=r1q2+ 1o

r1L="2q3 + T3

Tp—2 = Tn—14n + Tn

"m—1 = "nqn+1-

Then it follows that ged (a,b) = ged (b,r1) = -+ = ged (rn—1,Tn) = Tn.

The division algorithm, and by extension the euclidean algorithm also hold for the set of all polynomials
with rational coefficients, where a, b, q, and r would be polynomials.
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Example 1.2 (1986 AIME/5): What is the largest positive integer n such that n3 + 100 is divisible
ny n + 10?7

Answer. Note that n3 + 100 can be expressed as (n + 10)(n? + an +b) + ¢ = n3 + (10 + a)n? + (10a +
b)n + 10b + ¢ for a,b, c € R. Equating the coefficients yields the following system:

0= a+10
0=10a+b
100 = 10b+ ¢

which yields a = —10, b = 100, and ¢ = —900. By the Euclidean Algorithm we have
ged (n3 + 100, 7 + 10) = ged (=900, + 10) = ged (900, n + 10),
which has a maxiumum value for n when .

Let’s look at another example, this time from the first IMO.

21 4
Example 1.3 (1959 IMO/1): Prove that the fraction 14213

is irreducible for every natural

number n.

Proof. We can apply the Euclidean Algorithm as follows:

ged (21n +4,14n 4+ 3) = ged (Tn+1,14n + 3) = ged (Tn+1,1) = 1.

2In+4 .
S

Since the greatest common divisor of 21n + 4 and 14n + 3 is 1 for all n, it follows that T+ 3 i
n
O

irreducible.

Bézout's Identity
One application of the Euclidean Algorithm is Bézout’s Identity.
Theorem 2.1 (Bézout's Identity)

For any natural numbers a and b, there exist x,y € Z such that ax + by = ged (a, b).

Proof. We can apply the Euclidean Algorithm backwards:

ged (a,b) = rp—9 — rn_1Gn

=Tny — (rnfS - Tn72Qn71)Qn = Tn72(1 + Qnanl) — T'n—34n

= ax + by.

Example 2.2: Find «, y such that 110x + 380y = 10.

Answer. Applying the Euclidean Algorithm, we obtain

380 =110 x 3450
110 =50 x 2+ 10
50 =10 x 5.
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Now, we do it backwards, to obtain

10=110-50x 2
=110 — (380 — 110 x 3) x 2
=T7x 110 — 2 x 380.

Then we have (z,y) = (7, —2).
Let’s prove Euclid’s Lemma using Bézout’s Identity.

Example 2.3 (Euclid’'s Lemma): Prove that if a|bc and ged (a,b) = 1, then alc.

Proof. By Bézout’s Identity, there exist some z and y such that
axr +by =1.
Mutiplying this by ¢ yields c(azx) + ¢(by) = ¢, and since alac and blbe, we have a|c(azx) + c(by) = ¢c. O
Let’s look at another example.

Example 2.4 (Putnam 2000): Prove that the expression

ged (:ln, n) (:)

is an integer for all (n,m) such that n > m > 1.

Proof. By Bézout’s Identity, we have a and b such that ged (m,n) = am + bn. Substitution into the

expression yields
am—l—bn(n) _ am(n) +b<n>'
n m n \m m

Note that
am (n\ _am n! . (n—1)! . n—1
n\m) n \mn-m)!) " \(m-Dn-m)) \m-1)
Thus )
ged (m,n)n<m> = a(m B ) + b<m>
n n—1 n
is an integer for all integral n > m > 1. ]

We can also extend Bézout’s Identity to any number of variables.

Theorem 2.5 (General Form of Bézout's Identity)

For any integers ap,az, - - - ,ay, there exist integers x1,x9,- - ,x, such that

n
E a;x; = ged (a1, ag, -+ ,an).
p

Just like before, Bézout’s Identity works in the set of all polynomials with rational coefficients as well.
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53 Sources

1. AoPS (https://artofproblemsolving.com)

2. Justin Steven’s Olympiad Number Theory Through Challenging Problems (https://s3.amazonaws.
com/aops-cdn.artofproblemsolving.com/resources/articles/olympiad-number-theory.pdf)
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